Ensemble propagation and continuous matrix factorization algorithms
نویسندگان
چکیده
منابع مشابه
Ensemble propagation and continuous matrix factorization algorithms
We consider the problem of propagating an ensemble of solutions and its characterization in terms of its mean and covariance matrix. We propose differential equations that lead to a continuous matrix factorization of the ensemble into a generalized singular value decomposition (SVD). The continuous factorization is applied to ensemble propagation under periodic rescaling (ensemble breeding) and...
متن کاملEnsemble Topic Modeling via Matrix Factorization
Topic models can provide us with an insight into the underlying latent structure of a large corpus of documents, facilitating knowledge discovery and information summarization. A range of methods have been proposed in the literature, including probabilistic topic models and techniques based on matrix factorization. However, these methods tend to have stochastic elements in their initialization,...
متن کاملNonnegative Matrix Factorization: Algorithms and Parallelization
An alternative to singular value decomposition (SVD) in the information retrieval is the low-rank approximation of an original non-negative matrix A by its non-negative factors U and V . The columns of U are the feature vectors with no non-negative components, and the columns of V store the non-negative weights that serve for the combination of feature vectors. First experiments show that restr...
متن کاملAlgorithms for Non-negative Matrix Factorization
Non-negative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minimize the conventional least squares error while the other minimizes the generalized Kullback-Leibler d...
متن کاملDeveloping Genetic Algorithms for Boolean Matrix Factorization
Matrix factorization or factor analysis is an important task helpful in the analysis of high dimensional real world data. There are several well known methods and algorithms for factorization of real data but many application areas including information retrieval, pattern recognition and data mining require processing of binary rather than real data. Unfortunately, the methods used for real mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly Journal of the Royal Meteorological Society
سال: 2009
ISSN: 0035-9009
DOI: 10.1002/qj.457